IoT Strategy

Smart Device Data Aids Success of Demand Response Events

by Tom Kerber | Mar. 29, 2016

In Q2 2015, 19% of all U.S. broadband households owned one or more smart home devices. Many of these smart devices offer energy management capabilities including demand response. Today, utilities are evaluating the benefits of integrating smart devices into utility programs.

There are several ways that utilities can leverage data to improve the success of demand response (DR) events: leveraging data from smart thermostats, leveraging data from multiple connected devices, and leveraging data from smart meters.

Energy Modeling and Load Shifting

One application that uses data from smart devices is energy modeling. The cost of heating and cooling a home is a function of its equipment efficiency, building efficiency, and resident operation. Companies use weather information, basic information about the home size and layout, and thermostat operating history to build mathematical models of equipment performance and building performance. They then use those models to determine the best unoccupied temperature for each day and automatically make small changes to the system.

Energy modeling can enhance the effectiveness of thermostat-based demand response programs. For instance, when a DR event is taking place, some customers manually override the thermostat set point changes. In many cases, the manual adjustments result in longer equipment runtimes during the demand response events. When occupants become uncomfortable and discover that their thermostat set points have been changed, a common reaction is to push back by choosing a set point that is lower than the normal set point. The AC system must run longer to reach this new set point and consumes more energy than it would have without the DR event. Traditional thermostat-based demand response programs have override rates as high as 10 percent.

Load-shifting solutions use a combination of physical and behavioral models to define the pre-cooling strategy and event strategy. Pre-cooling uses the thermal mass within the home as a thermal battery storing energy that will then be used to cool the home during the DR event. The combination of the physical and behavioral models radically improves all metrics. For utilities that are considering installing and managing smart thermostats, energy modeling can maximize the return on that investment.

Leveraging Data from Multiple Smart Devices

Smart devices such as smart thermostats, lighting, water heaters, electric vehicles and EV chargers, energy storage systems, solar power inverters, and other Internet of Things assets can all be connected to DR programs.

   

Predictive data analytics across all devices can be performed on an individual house level and then aggregated for DR events. Companies such as Autogrid provide the utility with the ability to view customer profiles on a map of its territory, including areas with high demand. It can then use that information to target DR calls down to the substation level and device type. The platform can create groups by substation, by residential load profile, or on the individual device level. For instance, one neighborhood has a high concentration of pool pumps and electric vehicle charging stations. Another neighborhood has a high concentration of air conditioners and electric hot water heaters. One DR event can cycle off the largest energy consumer for each neighborhood.

Leveraging Smart Meter Data

Disaggregation is another application that uses data from smart devices. Disaggregation of residential meter data from a single whole-home data point into a listing of devices in the home and their associated consumption can be accomplished using different technical approaches. The first approach uses existing smart meter data stored in the meter data management system, which generally stores 15-minute interval data. This is a huge improvement over one reading per month. And from a disaggregation perspective, 15-minute data also makes it possible to determine the top three loads in a home. Collecting 15-second interval data allows the disaggregation of 10 appliances. Sampling the data at higher data rates, say at a kHz sample rate, allows disaggregation analytics engines to see harmonics and use those to break out even more devices. Collecting the real and reactive power components also provides more variables to more precisely identify individual loads.

Utilities can use disaggregation to enhance the effectiveness of DR programs by pushing notifications with specific behavioral changes that will provide the greatest amount of energy reduction for the specific house.

Connectivity and data analytics provide many new opportunities for enhanced energy management capabilities. As more smart devices with energy management features enter the home, utilities will have to decide where they see themselves fitting into the smart home environment. Will they partner with device manufacturers or service providers? Will they compete in the market and sell or distribute their own smart devices or platforms? Ultimately, using smart device data to achieve personalization will be key to the success of utilities.

This article originally appeared on Intelligent Utility




Tom Kerber

Tom Kerber

Director, IoT Strategy

Tom leads Parks Associates research in the areas of home controls, energy management, and home networks. Tom authors numerous reports on energy management and home controls covering the evolution of technology, partnership opportunities, and new business models. Tom’s work at Parks Associates includes managing consumer surveys that track trends and market opportunities and enable insightful evidence-based forecasting for energy, security, and home controls. Tom speaks frequently at key industry events, and his views are sought out by national press organizations and publications.

Tom has done extensive consulting with electric utilities operating in a variety of regulator structures and numerous firms within the smart home ecosystem. Recent utility engagements include defining the home area network roadmap for a California IOU, updating the consumer engagement strategy for a traditional vertically integrated IOU, providing consumer and industry analysis to refine EE and DR programs for an IOU in a restructured market, and providing insights on the evolution of the connected home for a large Midwest IOU. Tom has also led projects for many Fortune 500 companies, helping clients refine smart home strategies, develop scenarios of the future of the smart home market, enhance product roadmaps, and refine specific product features.

Prior to working at Parks Associates, Tom worked as director of engineering and director of product management in multiple industries. Tom began his career in the U.S. Navy nuclear power program on submarines. He holds a Bachelor of Science degree from the U.S. Naval Academy in systems engineering and a master's in software engineering from the University of Texas.

Industry Expertise: Residential Security, Smart Home Products and Services, Home Network Technology, Software Systems, Electric Utilities, AMI, Home Energy Management, Demand Response

© 1998-2017 Parks Associates. All Rights Reserved.